

# Convolutional Network for Image Synthesis Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2025

many slides from Alyosha Efros, Phillip Isola, Richard Zhang, James Hays, and Andrea Vedaldi, Jitendra Malik.

# Review (data-driven graphics)



# Review (data-driven graphics)



Nearest neighbor methods:

- 1. Stored examples
- 2. Calculate distance between two examples
- 3. Voting (label transfer): image blending/averaging

# Visual similarity via labels



"Penguin"





"Penguin"

### Machine Learning as data association



image X

label<sub>5</sub> Y

#### At test time...



image X

#### Basic idea



### Object recognition



### Object recognition



#### Neural network



#### Neural network

Learned



#### Deep neural network







$$y_j = \sum_i w_{ij} x_i$$

i: the  $i^{th}$  dimension of  $x_{i}$ , j; the  $j^{th}$  dimension of y



#### Rectified linear unit (ReLU)



Rectified linear unit (ReLU)



$$g(x) = \max(0, x)$$



$$y_j = \sum_i w_{ij} x_i$$
  $z_k = \max_{j \in \mathcal{N}(j)} g(y_j)$ 

i: the  $i^{th}$  dimension of  $x_7$ , j; the  $j^{th}$  dimension of y

#### Single depth slice



max pool with 2x2 filters and stride 2

| 6 | 8 |
|---|---|
| 3 | 4 |





$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

#### Convolutional Neural Nets



#### Convolutional Neural Nets

#### Convolution









→ "clown fish"



→ "grizzly bear"

Train network to associate the right label with each image



→ "chameleon"

Learned



#### Loss function



#### Loss function



#### Loss function



#### Loss function for classification

#### Network output Ground truth label



# Probability of the observed data under the model

$$H(\hat{z}, z) = -\sum_{c} z_{c} \log \hat{z}_{c}$$

Cross-entropy loss

c is the  $c^{th}$  class in the output



 $\mathbf{x}^{(1)}$ ,  $\mathbf{z}^{(1)}$  is the input and label of the 1st training image



 $\mathbf{x}^{(2)}$ ,  $\mathbf{z}^{(2)}$  is the input and label of the 2nd training image



#### Gradient descent

$$argmin_{w} \sum_{i} \ell(z^{(i)}, f(x^{(i)}, w)) = argmin_{w} L(w)$$

One iteration of gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \frac{\partial L(\mathbf{w^t})}{\partial \mathbf{w}}$$
 learning rate

#### Gradient descent



## $p(c|\mathbf{x})$



# Computer Vision before 2012



# Computer Vision Now



### Deep Learning for Computer Vision





Top 5 accuracy on ImageNet benchmark



[Redmon et al., 2018] **Object detection** 



[Güler et al., 2018] **Human understanding** 



[Zhao et al., 2017]

Autonomous driving

# Can Deep Learning Help Graphics?



# Can Deep Learning Help Graphics?



# Generating images is hard!



# from Classification to Generation



Predicting the color value of an output pixel given a patch

# Discriminative Deep Networks



# Discriminative Deep Networks



# Generative Deep Networks



# Better Architectures

# Fractionally-strided Convolution



Regular conv (no padding)



Fractiaionally-strided conv

# Generating chairs conditional on chair ID, viewpoint, and transformation parameters



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

#### With Varying Viewpoints



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

#### With Varying Transformation Parameters



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017<sub>51</sub>(CVPR 2015)

#### Interpolation between Two Chairs



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017<sub>5</sub> (CVPR 2015)

# Better Loss Functions





Grayscale image: L channel

 $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \stackrel{55}{ imes} 2}$  $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ ab

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.



 $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ 

 $\begin{array}{c|c} \bullet & ||\mathcal{F}|| & \longrightarrow & ||ab|| \\ \hline \end{array}$ 

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.

 $(\mathbf{X},\widehat{\mathbf{Y}})$ 

#### Simple L2 regression doesn't work ©







Ground truth



$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$



#### Better Loss Function

# $\theta^* = \arg\min_{\theta} \ell(\mathcal{F}_{\theta}(\mathbf{X}), \mathbf{Y})$

Regression with L2 loss inadequate

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

• Use per-pixel multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

#### Colors in ab space

(discrete)





#### Designing loss functions

Input



Ground truth







Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]

# Thank You!



16-726, Spring 2025

https://learning-image-synthesis.github.io/