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Convolutional Network for Image Synthesis
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many slides from Alyosha Efros, Phillip Isola, Richard Zhang, James Hays, and 

Andrea Vedaldi, Jitendra Malik.



Review (data-driven graphics)
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Review (data-driven graphics)

Nearest neighbor methods: 

1. Stored examples

2. Calculate distance between two examples

3. Voting (label transfer): image blending/averaging3



Visual similarity via labels 

?
==

“Penguin” “Penguin”
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Machine Learning as data association

“Penguin”
black box

classifier

image X label Y
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At test time…

image X

?
black box

classifier
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Basic idea

Brain/Machine “clown fish”
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Object recognition

Edges

Texture

Colors

Segments

Parts

“clown fish”

Feature extractors Classifier
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Object recognition

“clown fish”

Edges

Feature extractors

Texture

Colors

Segments

Parts

Classifier

Learned
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Neural network

“clown fish”

Learned
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Neural network

“clown fish”

Learned
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Deep neural network

“clown fish”

Learned
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Computation in a neural net

Input 

representation

Output 

representation
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Computation in a neural net

Input 

representation

Output 

representation

i: the 𝑖𝑡ℎ dimension of 𝑥, j; the 𝑗𝑡ℎ dimension of 𝑦14



Computation in a neural net

Rectified linear unit (ReLU)
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Computation in a neural net

Rectified linear unit (ReLU)
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Computation in a neural net

Filter Pool

i: the 𝑖𝑡ℎ dimension of 𝑥, j; the 𝑗𝑡ℎ dimension of 𝑦17
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Computation in a neural net

CS231n at Stanford



Computation in a neural net

“clown fish”…
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Convolutional Neural Nets

Slide from Andrea Vedaldi20



Convolutional Neural Nets

Convolution

filter
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Computation in a neural net

Last layer

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

“clown fish”argmax
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Learning with deep nets

“clown fish”

Learned
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Learning with deep nets

“clown fish”

“grizzly bear”

“chameleon”

Train network to 

associate the right label 

with each image
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Learning with deep nets

“clown fish”

Loss

Learned
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Loss function

“clown fish”

Loss error

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label
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Loss function

“clown fish”

Loss small

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label
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Loss function

“grizzly bear”

Loss large

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label
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Loss function for classification

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

clown fish

Ground truth label

…

iguana

elephant

Probability of the 

observed data under 

the model

Cross-entropy loss

𝐻 Ƹ𝑧, 𝑧 = −෍

𝑐

𝑧𝑐 log Ƹ𝑧𝑐
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𝑐 is the 𝑐𝑡ℎ class in the output



Learning with deep nets

“clown fish”

Loss

Learned
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ℓ 𝒛 1 , 𝑓 𝒙 1 , 𝑤

𝒙(1), 𝒛(1) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙
𝑜𝑓 𝑡ℎ𝑒 1𝑠𝑡 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒

𝒛(1)

𝒙(1)



Learning with deep nets

“grizzly bear”

Loss

Learned
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𝒙(2), 𝒛(2) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙
𝑜𝑓 𝑡ℎ𝑒 2𝑛𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒

ℓ 𝒛 2 , 𝑓 𝒙 2 , 𝑤

𝒛(2)

𝒙(2)



Learning with deep nets

“chameleon”

Loss

Learned
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ℓ 𝒛 3 , 𝑓 𝒙 3 , 𝑤

𝒛(3)

𝒙(3)

𝑎𝑟𝑔𝑚𝑖𝑛𝑤෍

𝑖

ℓ 𝑧(𝑖), 𝑓(𝑥 𝑖 , 𝑤)



Gradient descent

One iteration of gradient descent:

learning rate
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𝑎𝑟𝑔𝑚𝑖𝑛𝑤෍

𝑖

ℓ 𝑧(𝑖), 𝑓(𝑥 𝑖 , 𝑤) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤𝐿(𝑤)



Gradient descent
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[Krizhevsky et al. NIPS 2012]35



Computer Vision before 2012

Cat

Features Clustering Pooling Classification

36



Cat

[LeCun et al, 1998], [Krizhevsky et al,  2012]

Computer Vision Now

Deep Net

Cat

Features Clustering Pooling Classification
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Deep Learning for Computer Vision

[Zhao et al.,  2017][Güler et al., 2018][Redmon et al., 2018]

Object detection Human understanding Autonomous driving

Top 5 accuracy on ImageNet benchmark

[Deng et al. 2009] 70

75

80

85

90

95

100

2010 2011 2012 2013 2014 2015 2016 2017

Deep Net
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Can Deep Learning Help Graphics?

Cat
Modeling Texturing Lighting Rendering
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CatDeep Net

Cat
Modeling Texturing Lighting Rendering

Can Deep Learning Help Graphics?
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Generating images is hard!

8 Deep Net

Cat
Modeling Texturing Lighting Rendering

28x28 pixels
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from Classification

to Generation
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“yellow”

…
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Predicting the color value of an output pixel given a patch



Discriminative Deep Networks
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“Rockfish”



Discriminative Deep Networks
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Raw, Unlabeled Pixels



Generative Deep Networks
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Raw, Unlabeled Pixels



Better Architectures
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Fractionally-strided Convolution

48 © David Dau

Fractiaionally-strided convRegular conv (no padding)



Generating chairs conditional on chair ID, 

viewpoint, and transformation parameters

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks

PAMI 2017 (CVPR 2015)
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With Varying Viewpoints

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks

PAMI 2017 (CVPR 2015)
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With Varying Transformation Parameters

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks

PAMI 2017 (CVPR 2015)
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Interpolation between Two Chairs

Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks

PAMI 2017 (CVPR 2015)
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Better Loss Functions
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Ansel Adams. Yosemite Valley Bridge.
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Grayscale image: L channel Color information: ab channels

abL

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.

55



Concatenate (L,ab) channels
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Grayscale image: L channel

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.

abL



Input Output Ground truth

Simple L2 regression doesn’t work 
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Better Loss Function Colors in ab space
(discrete)
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• Regression with L2 loss inadequate

• Use per-pixel multinomial classification
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Color distribution cross-entropy loss with colorfulness enhancing term. 

Zhang et al. 2016

[Zhang, Isola, Efros, ECCV 2016]

Designing loss functions

Input Ground truth
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Thank You!

16-726, Spring 2025
https://learning-image-synthesis.github.io/
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